If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2-730x+2704=0
a = 49; b = -730; c = +2704;
Δ = b2-4ac
Δ = -7302-4·49·2704
Δ = 2916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2916}=54$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-730)-54}{2*49}=\frac{676}{98} =6+44/49 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-730)+54}{2*49}=\frac{784}{98} =8 $
| 0.7n=n-3 | | 2x^2+16x-3417=0 | | 2x/3+9=100 | | x/2+1.25x/2+3x/8=150 | | x/2+1.25x/2+3x/2=150 | | -4d+6=-7 | | x+2=−1.4 | | 28=-12+4x | | 2/3(x+3)=1/2(x+5) | | 10x-1=82 | | 4-(5/2)*(1/10*x)=1 | | 4-(5/2)*((1/10)*x)=1 | | 2+4x=3+6x-7 | | (x)-(8/3)*(x)=-10 | | 12/7x=x/2+17/2 | | 5=-3n+3n | | X+4.7=0.3x+9.6 | | -1=-1+2x-5x | | 4(5x-2)+3=11 | | -4=n-n | | n-9/2=-2 | | f(6)=6+9 | | 4=6a-6a | | -3.8+0.8x=-5.4 | | 2x=18+4x | | 3(b-2)=-6(b+4) | | -3(x-7)=-3(2+2x) | | 0=6n+5n | | -4k+24=-2(3k-6) | | 18x+5=−1+2x | | 18x+5=₋1+2x | | -19=-(g−-11) |